Trus Joist® Product Technical Informer

December 2020 (NW-N105)

Allowable Bearing Stress

The required bearing lengths for beams, columns and joists to prevent crushing of the wood at bearing points is a commonly overlooked aspect of the design process. The following tables list the Allowable Bearing Stress (also called compression perpendicular to grain $[f_{c\perp}]$) for commonly used beam and plate members and allowable end grain stress for different column materials $[f_{c\parallel}]$ (please note that the Allowable Stress-End Grain value for columns should not be used alone to size a column, things such as the length of the column and how it is used will reduce the allowable load for columns). The second page provides an example on how to check to make sure there is adequate bearing area based on the member reaction.

Bearing Area = (Member Width) x (Actual Bearing Length)

Bearing Stress = Member Reaction / Bearing Area

Beam Products in Joist Orientation	Allowable Stress - F _c ⊥
	(psi)
2.2E Parallam® PSL (West)	625
2.0E Parallam® PSL (East)	750
1.3E TimberStrand [®] LSL	710
1.5E TimberStrand® LSL	860
1.55E TimberStrand® LSL	900
2.0E Microllam® LVL	750
1.8E Parallam® PSL(2)	545
Douglas Fir Glulam	650

Wall Plates in Plank Orientation	Allowable Stress - F _c ⊥ (psi)
Southern Pine plate*	565
Douglas Fir plate*	625
Spruce-Pine-Fir (S-P-F) plate*	425
Hemlock Fir plate*	405
StrandGuard® TimberStrand® LSL plate	670
1.3E TimberStrand® LSL plate(3)	670
1.5E TimberStrand® LSL plate	750
1.55E TimberStrand® LSL plate	775

Column Products	Allowable Stress - End Grain F _{cll} (psi)
Douglas Fir (4x4 and smaller)*	1350
Douglas Fir (5x5 and larger)*	700
Hemlock Fir (4x4 and smaller)*	1300
Hemlock Fir (5x5 and larger)*	575
SPF (4x4 and smaller)*	1150
SPF (5x5 and larger)*	500
Parallam [®] PSL (all grades) (1)	2500
TimberStrand [®] LSL (all grades) (1)	1835

^{* #2} or better dimension lumber values based on 2018 NDS Supplement

⁽¹⁾ The actual member bearing on these will control design

^{(2) 1.8}E Parallam® PSL used in header orientation

⁽³⁾ For TimberStrand® LSL labeled 'Rimboard', F_c⊥ = 635 psi in plank orientation

Trus Joist® Product Technical Informer

December 2020 (NW-N105)

Bearing Area = (Member Width) x (Actual Bearing Length)

Bearing Stress = Member Reaction / Bearing Area

Example

51/4" x 14" Parallam® PSL (West) on a 2x4 Hem-Fir plate Beam reaction = 6,500 pounds

Look at the allowable bearing stress of both the Parallam® PSL beam and Hem-Fir plate and use the lesser of the 2 values as the controlling value (for this case it is the Hem-Fir plate at 405 psi).

Bearing area = $5\frac{1}{4}$ " x $3\frac{1}{2}$ " = 18.38 sq in

Bearing stress = 6,500 / 18.38 = 354 psi 354 psi < 405 psi OK

If the bearing stress was greater than the allowable, one could look at a wider beam, bearing accessory (cap) or other means to increase bearing area to prevent crushing of the wood plate.